THE HEART AND LUNGS

Jason Ali Specialist Registrar Cardiothoracic Surgery Royal Papworth Hospital

OBJECTIVES

 Provide an introduction to cardiothoracic anatomy and physiology

• Provide an insight into common surgical diseases

THE HEART

FUNCTION OF THE HEART

- Right heart \rightarrow pumps blood to the lungs
- Left heart \rightarrow pumps blood to the body
- Functions of the blood
 - Deliver oxygen and nutrients to the cells
 - Remove metabolic wastes and carbon dioxide
 - Immune system
 - Endocrine system
 - Coagulation system

HEART STRUCTURE

HEART VALVES

- Atrioventricular valves Mitral and Tricuspid
 - Papillary muscles and chordae tendinae prevent leaflet prolapse

HEART VALVES

- Pulmonary artery and aortic valves are semilunar
 - Embedded in the artery wall
 - Significant pressure differences

CARDIAC CYCLE

PHASES OF THE CARDIAC CYCLE

CARDIAC OUTPUT

• Cardiac output = the amount of blood pumped by the ventricle per minute = Heart rate x Stroke volume

HEART RATE

- Autonomic innervation
 - Sympathetic system \rightarrow increases heart rate
 - Parasympathetic system \rightarrow decreases heart rate
- Chemoreceptors $\rightarrow CO_2$ elevation leads to increased heart rate
- Hormones \rightarrow Thyroid hormone increases heart rate

STROKE VOLUME

- Stroke volume = End diastolic volume End systolic volume
- Dependent on three variables:
 - Preload how much blood is returning to the heart
 - **Myocardial contractility** strength of myocardial contraction
 - Afterload resistance against which the heart needs to pump

PRELOAD: STARLING LAW

AFTERLOAD AND CONTRACTILITY

CONDUCTION SYSTEM

- Conducting tissue can generate action potentials independently
- Sinoatrial node natural pacemaker
- Atrioventricular node
- Bundle of His
- Purkinje fibres
- A fibrous skeleton insulates atria from the ventricles

ELECTROCARDIOGRAM

SURGICAL CARDIAC DISEASE

Coronary artery disease: atherosclerosis

CORONARY ARTERY BYPASS GRAFTING

AORTIC VALVE STENOSIS

THE LUNGS

RESPIRATORY SYSTEM

- Functions of the respiratory system
 - Gas exchange
 - Speech
 - Acid-base homeostasis
 - Renal physiology ACE

RESPIRATORY SYSTEM

- Upper respiratory tract
 - Nose through to the larynx
- Lower respiratory tract
 - Trachea to the alveoli

MUCO-CILIARY ESCALATOR

• Pseudostratified columnar epithelium

BRONCHIAL TREE

- Trachea
- Main bronchi
- Lobar bronchi
- Segmental bronchi
- Bronchioles
- Terminal bronchioles
- Respiratory bronchioles
- Alveolar sacks

ALVEOLI

- Site of gas exchange
 - Large surface area
 - Thin epithelium
 - Minimal interstitial space

ALVEOLI

• Type I pneumocytes

• Involved in gas exchange

• Type II pneumocytes

• Produce surfactant to prevent alveoli from collapsing during exhalation

• Type III pneumocytes

 Alveolar macrophages – phagocytose dust and other particles

INSPIRATION / EXPIRATION

LUNG FLOW-VOLUME LOOPS

LUNG VOLUMES

SURGICAL LUNG DISEASE

Lung cancer Wedge Resection Segmentectomy cancer right lung left lung Lobectomy Pneumonectomy

SUMMARY

• Overview of cardiac and respiratory anatomy and physiology

• Insight into cardiothoracic surgical disease